Abstract

We have achieved a self-controlled asymmetrical etching in metalorganic chemical vapor deposition-grown InAlAs/InGaAs heterostructures, which can be suitable for fabricating modulation-doped field-effect transistors (MODFETs) with gate-groove profiles for improved performance. The technology is based on electrochemical etching phenomena, which can be effectively controlled by using different surface metals for ohmic electrodes. When surface metals of Pt and Ni are deposited on the source and the drain, respectively, the higher electrode potential of Pt results in slower etching on the source side than on the drain side. Thus, asymmetry of gate grooves can be formed by wet-chemical etching with citric-acid-based etchant. This represents a new possibility to conduct “recess engineering” for InAlAs/InGaAs MODFETs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.