Abstract
The increasing energy demands have prompted research on conversion and alloying materials, offering high lithium and sodium storage capacities. However, most of these materials suffer from huge volume expansion and degradation over the thousands of charging and discharging cycles required for commercial applications. In this study, we demonstrate a facile route to synthesize FeSbO4 nanocrystals that possess theoretical lithium and sodium storage capacity of 1220 mAh g-1. Operando X-ray diffraction studies reveal the electrochemically induced amorphization of the nanocrystals upon alkali-ion storage. We achieved specific storage capacities of ∼600 mAh g-1 for lithium and ∼300 mAh g-1 for sodium, respectively. The disparity in the lithium and sodium electrochemistry arises from the unique lithiation/sodiation pathways adopted by the nanocrystals. This study offers new insights into the chemistry and mechanism of conversion- and alloying-based energy storage materials that would greatly assist the development of next-generation active materials for energy storage.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.