Abstract

Nickel-rich layered electrode material has been attracting significant attention owing to its high specific capacity as a cathode for lithium-ion batteries. Generally, the high-nickel ternary precursors obtained by traditional coprecipitation methods are micron-scale. In this work, the submicrometer single-crystal LiNi0.8Co0.1Mn0.1O2 (NCM) cathode is efficiently prepared by electrochemically anodic oxidation followed by a molten-salt-assisted reaction without the need of extreme alkaline environments and complex processes. More importantly, when prepared under optimal voltage (10 V), single-crystal NCM exhibits a moderate particle size (∼250 nm) and strong metal-oxygen bonds due to reasonable and balanced crystal nucleation/growth rate, which are conducive to greatly enhancing the Li+ diffusion kinetics and structure stability. Given that a good discharge capacity of 205.7 mAh g-1 at 0.1 C (1 C = 200 mAh g-1) and a superior capacity retention of 87.7% after 180 cycles at 1 C are obtained based on the NCM electrode, this strategy is effective and flexible for developing a submicrometer single-crystal nickel-rich layered cathode. Besides, it can be adopted to elevate the performance and utilization of nickel-rich cathode materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.