Abstract

The electrochemical behavior of bisphenol A (BPA) was examined using cyclic voltammetry, bulk electrolysis and chemical oxidation in aprotic organic solvents. It was found that BPA undergoes a chemically irreversible voltammetric oxidation process to form compounds that cannot be electrochemically converted back to the starting materials on the voltammetric timescale. To overcome the effects of electrode fouling during controlled potential electrolysis experiments, NO+ was used as a one-electron chemical oxidant. A new product, hydroxylated bisdienone was isolated from the chemical oxidation of BPA with 4mol equiv of NO+SbF6− in low water content CH3CN. The structure of the cation intermediate species was deduced and it was proposed that BPA is oxidized in a four-electron/two-proton process to form a relatively unstable dication which reacts quickly in the presence of water in acetonitrile (in a mechanism that is similar to phenols in general). However, as the water content of the solvent increased it was found that the chemical oxidation mechanism produced a nitration product in high yield. The findings from this study provide useful insights into the reactions that can occur during oxidative metabolism of BPA and highlight the possibility of the role of a bisdienone cation as a reactive metabolite in biological systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.