Abstract

A facile electrodeposition technique was utilized to deposit single-walled carbon nanotubes (SWNTs) with cadmium telluride (CdTe) with well-controlled size, density, surface morphology, and composition. By controlling the applied charge, the morphology of these hybrid nanostructures was altered from CdTe nanoparticles on SWNTs to SWNT/CdTe core/shell nanostructures and the composition of the CdTe nanoparticles was altered from Te-rich (29 at% Cd) to Cd-rich (79 at% Cd) CdTe by adjusting the deposition potential. The electrical and optoelectrical properties of these hybrid nanostructures showed that photo-induced current can be tuned by tailoring the conductivity type (n-type or p-type), morphology, and size of the CdTe nanostructures, with a maximum photosensitivity (ΔI/I(0)) of about 30% for SWNT/Cd-rich CdTe (n-type) core/shell nanostructures. This work demonstrates a novel approach for synthesizing metal chalcogenide/SWNT hybrid nanostructures for various electrical and optoelectrical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.