Abstract
Organic electromechanical synthesis is an eco-friendly and efficient method for material synthesis, effectively addressing the high energy consumption and pollution problems in the traditional chemical industry. By combining hydrogen production from water electrolysis with organic electromechanical synthesis, the reactive oxygen/hydrogen from water hydrolysis can be utilized to oxidize/reduce organic compounds, reducing energy consumption and producing valuable organic products. However, this strategy still faces challenges when implemented in the industry. This paper addresses major technical challenges in the field, providing new insights for future advancements. Firstly, when selecting anode reactions for hydrogen production, it is important to consider the value and market demand of the oxidation product to match the production scale. Secondly, the development of efficient electrocatalysts and electrodes is required to enhance the oxidation kinetics and mass transfer of organics at the current density levels of industrial hydrogen production (500–2000 mA cm−2). Thirdly, it is essential to improve the selectivity and Faraday efficiency of the anode target product to lower the cost of subsequent separation and purification. Fourthly, existing anion and oxygen ion exchange membranes lack corrosion resistance to organic matter, and new separator materials with high ion conductivity and stability are crucial for the electrolytic coupling system. Finally, when combining organic oxidation and water electrolysis, the complexity of product separation increases, and it is recommended to integrate distillation, extraction, membrane separation, and electrochemical reactions to improve process efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.