Abstract
This paper presents comparative performance analysis of photovoltaic (PV) hydrogen production using water, methanol and hybrid sulfur (SO2) electrolysis processes. Proton exchange membrane (PEM) electrolysers are powered by grid connected PV system. In this system design, electrical grid is considered as a virtual energy storage system (VESS) where the surplus of PV production can be injected and subsequently taken to support the electrolyser. Methanol (ME) and hybrid sulfur (HSE) electrolysis are compared to the conventional water electrolysis (WE) in term of operating cell voltage. Based on the experimental results reported in the literature, semi-empirical models describing the relationship between the hydrogen production rate and the electrolyser cell power input are proposed. Furthermore, power and hydrogen management strategy (PHMS) is developed. Case study is carried out to show the impact of each type of electrolysis on the system component sizes and evaluate the hydrogen production potentialities. Results show that the use of ME allows to produce 65% more hydrogen than with using WE. Moreover, the amount of hydrogen produced is almost double in the case of HSE. At Algiers city, based on a grid connected PV/Electrolyser system, it is possible to produce about 25 g/m2 d and 29 g/m2 d of hydrogen, respectively, through ME and HSE compared to 15 g/m2 d of hydrogen when using WE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.