Abstract

Conducting polymers have been synthesised electrochemically from 4-amino-3-hydroxynaphthalene-1-sulfonic acid (4A3HN1SA), 4-aminonaphthalene-1-sulfonic acid (4AN1SA) and 7-amino-4-hydroxynaphthalene-2-sulfonic acid (7A4HN2SA) on glassy carbon electrodes. The influence of the positive potential limit on the potential cycling polymerisation of 4A3HN1SA was studied, and a sufficiently high potential limit allowed better film growth. Under similar polymerisation conditions, the three monomers showed different radical formation potentials and different voltammetric peak profiles. The effects of scan rate and solution pH on the electrochemical properties of the polymers were investigated, in the range between 10 and 200 mV s−1, all the modified electrodes showing a surface-confined electrode process. In the pH range from 2.0 to 9.0, the anodic peak potentials decreased linearly with increasing pH for all the three modified electrodes. The modified electrodes were characterised by electrochemical impedance spectroscopy in pH 4.0 and 7.0 buffer solutions. The results showed a more porous poly(7A4HN2SA) film, which is less affected by pH change than the other two films. Scanning electron microscopy of the polymer films also showed significant differences in their morphologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.