Abstract

The electroactivity of butylate (BTL) is studied by cyclic voltammetry (CV) and square wave voltammetry (SWV) at a glassy carbon electrode (GCE) and a hanging mercury drop electrode (HMDE). Britton–Robinson buffer solutions of pH 1.9–11.5 are used as supporting electrolyte. CV voltammograms using GCE show a single anodic peak regarding the oxidation of BTL at +1.7 V versus AgCl/Ag, an irreversible process controlled by diffusion. Using a HMDE, a single cathodic peak is observed, at −1.0 V versus AgCl/Ag. The reduction of BTL is irreversible and controlled by adsorption. Mechanism proposals are presented for these redox transformations. Optimisation is carried out univaryingly. Linearity ranges were 0.10–0.50 mmol L−1 and 2.0–9.0 µmol L−1 for anodic and cathodic peaks, respectively. The proposed method is applied to the determination of BTL in waters. Analytical results compare well with those obtained by an HPLC method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.