Abstract

Electrochemical methods are combined with shell-isolated nanoparticle-enhanced Raman spectroscopy (EC-SHINERS) for a comprehensive study of pyridine adsorption on Au(111), Au(100) and Au(110) single crystal electrode surfaces. The effects of crystallographic orientation, pyridine concentration, and applied potential are elucidated, and the formation of a second pyridine adlayer on Au(111) is observed spectroscopically for the first time. Electrochemical and SHINERS results correlate extremely well throughout this study, and we demonstrate the potential of EC-SHINERS for thorough characterization of processes occurring on single crystal surfaces. Our method is expected to open up many new possibilities in surface science, electrochemistry and catalysis. Analytical figures of merit are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.