Abstract
Electrochemical generation of ammonia (NH3 ) from nitrogen (N2 ) using renewable electricity is a desirable alternative to current NH3 production methods, which consume roughly 1 % of the world's total energy use. The use of catalysts to manipulate the required electron and proton transfer reactions with low energy input is also a chemical challenge that requires development of fundamental reaction pathways. This work presents an approach to the electrochemical reduction of N2 into NH3 using a coordination complex of aluminum(III), which facilitates NH3 production at -1.16 V vs. SCE. Reactions performed under 15 N2 liberate 15 NH3 . Electron paramagnetic resonance spectroscopic characterization of a reduced intermediate and investigations of product inhibition, which limit the reaction to sub-stoichiometric, are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.