Abstract
Modern agriculture is heavily dependent on fossil resources. Both direct energy use for crop management and indirect energy use for fertilizers, pesticides and machinery production have contributed to the major increases in food production seen since the 1960s. However, the relationship between energy inputs and yields is not linear. Low-energy inputs can lead to lower yields and perversely to higher energy demands per tonne of harvested product. At the other extreme, increasing energy inputs can lead to ever-smaller yield gains. Although fossil fuels remain the dominant source of energy for agriculture, the mix of fuels used differs owing to the different fertilization and cultivation requirements of individual crops. Nitrogen fertilizer production uses large amounts of natural gas and some coal, and can account for more than 50 per cent of total energy use in commercial agriculture. Oil accounts for between 30 and 75 per cent of energy inputs of UK agriculture, depending on the cropping system. While agriculture remains dependent on fossil sources of energy, food prices will couple to fossil energy prices and food production will remain a significant contributor to anthropogenic greenhouse gas emissions. Technological developments, changes in crop management, and renewable energy will all play important roles in increasing the energy efficiency of agriculture and reducing its reliance of fossil resources.
Highlights
The future for farming and agriculture holds many challenges, not least the continued efforts to optimize energy inputs and reduce greenhouse gas (GHG) emissions
ENERGY USE FOR FOOD PRODUCTION The 3rd Assessment report of the Intergovernmental Panel on Climate Change (IPCC 2001) estimated that by 1995, agriculture accounted for about 3 per cent (9 EJ) of global energy consumption, but more than 20 per cent of global GHG emissions
It has been estimated that 30 per cent of the total fossil energy used in maize production is accounted for by nitrogen fertilizer production (Tilman 1999) and that fertilizer production is responsible for up to 1.2 per cent of all anthropogenic GHG emissions (Wood & Cowie 2004)
Summary
The future for farming and agriculture holds many challenges, not least the continued efforts to optimize energy inputs and reduce greenhouse gas (GHG) emissions This needs to be set against the urgent and growing need to improve yields to meet the anticipated requirements to provide food, feed, fuel, chemicals and materials for the growing global population. These challenges are and will increasingly be influenced by the availability and price of oil, natural gas and coal, as well as by policies set to meet carbon emissions targets and other sustainability requirements. Associated with reducing GHG emissions and considers options for reducing the dependency of agriculture on energy by considering alternatives, including the optimization and integration of land use for multi-purpose outcomes
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society B: Biological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.