Abstract

Electrochemical CO2 reduction to value‐added chemicals/fuels provides a promising way to mitigate CO2 emission and alleviate energy shortage. CO2‐to‐CO conversion involves only two‐electron/proton transfer and thus is kinetically fast. Among the various developed CO2‐to‐CO reduction electrocatalysts, transition metal/N‐doped carbon (M‐N‐C) catalysts are attractive due to their low cost and high activity. In this work, recent progress on the development of M‐N‐C catalysts for electrochemical CO2‐to‐CO conversion is reviewed in detail. The regulation of the active sites in M‐N‐C catalysts and their related adjustable electrocatalytic CO2 reduction performance is discussed. A visual performance comparison of M‐N‐C catalysts for CO2 reduction reaction (CO2RR) reported over the recent years is given, which suggests that Ni and Fe‐N‐C catalysts are the most promising candidates for large‐scale reduction of CO2 to produce CO. Finally, outlooks and challenges are proposed for future research of CO2‐to‐CO conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.