Abstract

Electrochemical charge transfer through multilayer thin films of zinc and nickel 5,10,15,20-tetra(4-ethynylphenyl) porphyrin constructed via copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry was examined. Current rectification toward various outer-sphere redox probes is revealed with increasing numbers of layers, as these films possess insulating properties over the neutral potential range of the porphyrin, then become conductive upon reaching its oxidation potential. Interfacial electron transfer rates of mediator-dye interactions toward [Co(bpy)3](2+), [Co(dmb)3](2+), [Co(NO2-phen)3](2+), [Fe(bpy)3](2+), and ferrocene (Fc), all outer-sphere redox species, were measured by hydrodynamic methods. The ability to modify electroactive films' interfacial electron transfer rates, as well as current rectification toward redox species, has broad applicability in a number of devices, particularly photovoltaics and photogalvanics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.