Abstract

The electrochemical properties of LiFePO4 as a cathode of lithium ion batteries considerably depend on a particle size of LiFePO4 and a condition of carbon coating. In this study, LiFePO4 powders were prepared using ultrasonic spray pyrolysis method, and then LiFePO4/C composites were made by infiltrating sucrose solution into LiFePO4 powders, drying, high-energy milling and annealing. The effects of high-energy milling were analyzed by comparing with electrochemical properties of powders synthesized without high-energy milling. It was found that the milling process drastically reduced the particle size of synthesized powders and electrical conductivity, and improved discharge capacity, cycle stability and rate performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call