Abstract

The utilization of lanthanide perovskite oxides as electrode materials for supercapacitors has garnered significant interest owing to their excellent electrical conductivity, low cost, and excellent thermal stability. In this study, LaMO3(M=Cr, Mn, and Co) nanoparticles were prepared by the sol–gel method coupled with a calcination process. To evaluate the microstructures, morphologies, and electrochemical properties of the samples, a variety of techniques were employed, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area measurements, cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) cycling, and electrochemical impedance spectroscopy (EIS). The results revealed that the LaCoO3 electrodes exhibited a maximum specific capacitance of 118.4 F/g at a current density of 1 A/g, attributed to its higher concentration of oxygen vacancy, larger specific surface area, and lower charge transfer resistance. This discovery substantiates the notion that the electrochemical efficacy is enhanced with the diminishing B-site cation radius in the perovskite LaMO3 system. The charge–discharge process was employed to investigate the anion-intercalation mechanism of LaMO3(M=Cr, Mn, and Co).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call