Abstract

In this study, Strontium (Sr)-doped perovskite lanthanum manganite (La1−xSrxMnO3) nanoparticles were prepared by the sol–gel method and used as electrode materials of supercapacitors. Microstructures, morphologies, and electrochemical properties of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), a transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET) surface area measurements, cyclic voltammetry (CV), and galvanostatic charge/discharge (GCD) cycling. Investigations demonstrated that the La0.85Sr0.15MnO3 nanoparticles had a maximum specific capacitance of 185.5 F/g at a current density of 0.5 A/g and a low charge transfer resistance (0.38 Ω) in 3 M KOH aqueous electrolyte solutions. La0.85Sr0.15MnO3 electrode yields the highest capacitance behavior because of the larger specific surface area, lower charge transfer resistance, and higher concentration of oxygen vacancy. This result demonstrates that Sr doping significantly improved the electrochemical properties of the LaMnO3 system. The anion-intercalation mechanism was examined by a charge–discharge process. This provides a promising electrode material for supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.