Abstract

The paper is an overview of the results of the investigation on electrochemical promotion of three catalytic reactions: methane oxidation with oxygen, NO reduction with hydrogen at 135 °C and Fischer–Tropsch synthesis (FTS) at 170 °C in the [CH4/O2(or NO/H2 or CO/H2)/Ar//Pt (or Pt/Ru)//PBI(H3PO4)/H2, Ar] fuel cell. It has been shown that the partial methane oxidation to C2H2 and the C2 selectivity were electrochemically promoted by the negative catalyst polarization. This was also the case in NO reduction with hydrogen for low NO and H2 partial pressures. In both cases the catalytic reactions have been promoted by the electrochemically produced hydrogen. It has been found that the NO reduction with hydrogen on the Pt/PBI strongly depends on NO and hydrogen partial pressures in the working gas mixture. At higher NO and H2 partial pressures the catalysis is promoted by the electrochemical pumping of H+ from the catalyst, i.e. at positive polarization. FTS demonstrated the highest methane production rate (11% of CO conversion) at zero fuel cell voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.