Abstract
Accurate and rapid detection of the causative agent of a disease is of great importance in controlling the spread of the disease. This work developed a biosensor with the Bi2Te3 family of topological insulators for detection of the SARS-CoV-2 virulence factor. The Bi2Te3 family is a three-dimensional topological insulator material with topologically protected surface states; the presence of these surface states facilitates charge transfer between the electrode and electrolyte interface. Compared with the detection performance of Bi2Se3, BiSbTeSe2, and a trivial insulator like Sb2Se3, Bi2Te3 exhibits superior characteristics. A Bi2Te3 electrochemical detection platform is utilized to fabricate a sensor that can detect SARS-CoV-2 DNA, RNA, and antigen for label-free target detection. The concentration range of DNA detection by the biosensor using Bi2Te3 is between 1.0 × 10-15 and 1.0 × 10-10 M, and the detection limit can reach 1.41 × 10-16 M. Furthermore, it exhibits excellent selectivity and maintains good stability even after being stored for 14 days. This study provides a new way to apply topological insulator materials in the field of biosensors and use their unique electronic structure to improve the accuracy and speed of disease detection and diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.