Abstract

Topological insulators represent a new quantum state of matter which is characterized by peculiar edge or surface states that show up due to a topological character of the bulk wave functions. This review presents a pedagogical account on topological insulator materials with an emphasis on basic theory and materials properties. After presenting a historical perspective and basic theories of topological insulators, it discusses all the topological insulator materials discovered as of May 2013, with some illustrative descriptions of the developments in materials discoveries in which the author was involved. A summary is given for possible ways to confirm the topological nature in a candidate material. Various synthesis techniques as well as the defect chemistry that are important for realizing bulk-insulating samples are discussed. Characteristic properties of topological insulators are discussed with an emphasis on transport properties. In particular, the Dirac fermion physics and the resulting peculiar quantum oscillation patterns are discussed in detail. It is emphasized that proper analyses of quantum oscillations make it possible to unambiguously identify surface Dirac fermions through transport measurements. The prospects of topological insulator materials for elucidating novel quantum phenomena that await discovery conclude the review.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call