Abstract
Anovel electrochemical platform for amaranth determination has been developed using a rapid, easy, inexpensive, and portable molecularly imprinted polymer technique. The MIP platform was fabricated by electropolymerizing melamine as monomer in the presence of amaranth as template on the surface of ZnO-MWCNT/SPCE. Then, amaranth was completely eluted, leaving imprinted cavities in the polymeric film that could effectively recognize amaranth in solution. The electrochemical platform based on a molecularly imprinted polymelamine was analyzed by scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). Under optimum conditions, the developed MIP/ZnO-MWCNT/SPCE platform can be properly used for amaranth determination, with high sensitivity of 96.2 µA µM cm-2, two linear concentration ranges (0.01 to 1µM and 1 to 1000µM) and a low limit of detection of 0.003µM. The anodic peak potential of amaranth was found to be 0.73V. Additionally, the polymelamine MIP films specifically recognize amaranth molecules, making it possible to detect amaranth in a complex solution with high selectivity, excellent repeatability, reproducibility, and stability. The MIP/ZnO-MWCNT modified screen-printed carbon electrode was successfully applied to determine amaranth in pharmaceutical and water samples, with recovery values ranging from 99.7 to 102% and RSD% values less than 3.2%.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have