Abstract

Nitrogen-doped carbon nanotubes (NCNTs) are obtained using a post-treatment method under different sintering temperatures. The catalysts can be removed from the Carbon Nanotubes (CNTs) within an acid treatment process. Then, the purified CNTs can be employed as a nitrogen doping basis. This research adds melamine as a nitrogen source during the sintering procedure under different temperatures to achieve NCNTs, which are applied to the cathodes. LiMn2O4 (LMO) cathode slurries are prepared using pristine CNTs and NCNTs samples as conductive additives. Coin cell lithium-ion batteries (LIBs) are fabricated using slurry samples. X-ray photoelectron spectroscopical analysis shows the nitrogen doping degree is up to 5 atom%, and graphitic-N nitrogen groups are the dominating species present on the NCNT’s surface while being treated at 800 °C. Graphitic-N nitrogen groups improve the conductivity and surface area of the NCNTs, which increases the rate capacity (106.8 mA h g−1 at 5 C) and cyclic retention (92.45% of initial capacity after 200 cycles at 5 C) of the lithium-ion batteries. The morphology of the NCNTs, the concentration of NCNTs elements, and the electrochemical performances of coin cell batteries are extensively discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call