Abstract

Lead halide perovskite nanocrystals have drawn attention as active light-absorbing or -emitting materials for opto-electronic applications due to their facile synthesis, intrinsic defect tolerance, and color-pure emission ranging over the entire visible spectrum. To optimize their application in, e.g., solar cells and light-emitting diodes, it is desirable to gain control over electronic doping of these materials. However, predominantly due to the intrinsic instability of perovskites, successful electronic doping has remained elusive. Using spectro-electrochemistry and electrochemical transistor measurements, we demonstrate here that CsPbBr3 nanocrystals can be successfully and reversibly p-doped via electrochemical hole injection. From an applied potential of ∼0.9 V vs NHE, the emission quenches, the band edge absorbance bleaches, and the electronic conductivity quickly increases, demonstrating the successful injection of holes into the valence band of the CsPbBr3 nanocrystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.