Abstract

AbstractThe mechanism of electrochemical oxidation of quercetin on a glassy carbon electrode has been studied using cyclic, differential pulse and square‐wave voltammetry at different pH. It proceeds in a cascade mechanism, related with the two catechol hydroxyl groups and the other three hydroxyl groups which all present electroactivity, and the oxidation is pH dependent. Quercetin also adsorbs strongly on the electrode surface; and the final oxidation product is not electroactive and blocks the electrode surface. The oxidation of the catechol 3′,4′‐dihydroxyl electron‐donating groups, occurs first, at very low positive potentials, and is a two electron two proton reversible reaction. The hydroxyl group oxidized next was shown to undergo an irreversible oxidation reaction, and this hydroxyl group can form a intermolecular hydrogen bond with the neighboring oxygen. The other two hydroxyl groups also have an electron donating effect and their oxidation is reversible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.