Abstract

AbstractThe electrochemical behavior of sanguinarine, a quaternary benzophenanthridine glycoside alkaloid with antimicrobial, anti‐inflammatory, antioxidant and/or immune‐stimulatory activities, was studied at a glassy carbon electrode using cyclic, differential pulse, and square wave voltammetry. The oxidation of sanguinarine is a quasireversible, diffusion‐controlled process and occurred in a cascade mechanism with the formation of several oxidation products which adsorbed at the electrode surface. The oxidation of sanguinarine is pH dependent and involves the transfer of the same number of electrons and protons. The adsorbed sanguinarine oxidation products are reversibly oxidized at the glassy carbon electrode surface and their oxidation for a wide range of pHs was also studied by differential pulse and square wave voltammetry. A mechanism for the oxidation of sanguinarine at glassy carbon electrode is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call