Abstract

Ochratoxin A (OTA, 1A) is a mycotoxin implicated in human kidney carcinogenesis, in which oxidative activation is believed to play a key role. To gain an understanding of the oxidative behavior of the toxin, we have carried out an electrochemical study and have observed a direct correlation between the electrochemistry of OTA and 4-chlorophenol (4-ClPhOH). Cyclic voltammetry (CV) of OTA in acetonitrile (MeCN) showed that the toxin exhibits an irreversible oxidative half-peak potential (E(p/2)) of 1.81 V vs saturated calomel electrode (SCE); the corresponding value for 4-ClPhOH is 1.59 V. For both compounds, subsequent scans revealed the appearance of the respective hydroquinone/benzoquinone couple, which formed from the oxidation of the parent para-chlorophenol moiety. The hydroquinone of OTA (OTHQ, 2) exhibited E(p/2) = 1.21 V in MeCN. Deprotonation of OTA to form the phenolate (OTA(-)) lowered the potential to E(p/2) = 1.0 V in MeCN. However, from the oxidation of OTA(-), no evidence for the OTHQ(2)/OTQ(3) redox couple was found. In aqueous phosphate buffer (pH 6-8), the electrochemical behavior of OTA mimicked that observed for OTA(-) in MeCN; E(p/2) was approximately 0.8 V vs SCE and subsequent scans did not generate the OTHQ/OTQ redox couple. From capillary electrophoresis (CE), a diffusion coefficient (D) of 0.48 x 10(-5) cm(2) s(-1) was determined for OTA in phosphate buffer, pH 7.0. Combining this value with electrochemical data suggested that OTA undergoes a 1H(+)/1e oxidation in aqueous media. The biological implications of these findings with respect to the oxidative metabolism of OTA, and other chlorinated phenols, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.