Abstract

Described here is a semiquantitative theoretical treatment of the kinetics of outer sphere electrochemical reactions. The framework presented here, which is based on simple physical arguments, predicts heterogeneous rate constants consistent with previous experimental observations (k0 > 10 cm/s). This theory is applied to the analysis of voltammetry experiments involving ultramicroelectrodes modified with thin, insulating oxide films where electronic tunneling between the electrode and redox species in solution (metal-insulator-solution tunneling) is expected to play a prominent role. It is shown that analysis of the voltammetric response of an outer sphere redox couple can be used to track changes in the structure of the adsorbed insulating layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.