Abstract

Nanotechnology has potential to offer solutions to problems facing the developing world. Here, we demonstrate the efficacy of an anodic multiwalled carbon nanotube (MWNT) microfilter toward the removal and inactivation of viruses (MS2) and bacteria (E. coli). In the absence of electrolysis, the MWNT filter is effective for complete removal of bacteria by sieving and multilog removal of viruses by depth-filtration. Concomitant electrolysis during filtration results in significantly increased inactivation of influent bacteria and viruses. At applied potentials of 2 and 3 V, the electrochemical MWNT filter reduced the number of bacteria and viruses in the effluent to below the limit of detection. Application of 2 and 3 V for 30 s postfiltration inactivated >75% of the sieved bacteria and >99.6% of the adsorbed viruses. Electrolyte concentration and composition had no correlation to electrochemical inactivation consistent with a direct oxidation mechanism at the MWNT filter surface. Potential dependent dye oxidation and E. coli morphological changes also support a direct oxidation mechanism. Advantages of the electrochemical MWNT filter for pathogen removal and inactivation and potential for point-of-use drinking water treatment are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.