Abstract

An electrochemically active multiwalled carbon nanotube (MWNT) filter is observed to be effective toward the adsorptive removal and electrochemical oxidation of the aqueous dyes, methylene blue and methyl orange, and the oxidation of the aqueous anions, chloride and iodide. In the absence of electrochemistry, the MWNT filter completely removed all dye from the influent solution until a near monolayer of dye molecules adsorbed to the MWNT filter surface. Electrochemical filtration at 2 V resulted in >98% oxidation of the influent dye during a single pass through the 41 μm thin porous MWNT network with a ≤1.2 s residence time. The electrochemical MWNT filter was also able to oxidize aqueous chloride and iodide with minimal overpotential. However, the oxidation of these anions was limited by the number of electrochemically active MWNT surface sites. These results show the potential of an electrochemical MWNT filter for the adsorptive removal and oxidative degradation of aqueous contaminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.