Abstract

The electrochemical migration (ECM) behavior of Sn-3.0Ag-0.5Cu solder alloy under thin electrolyte layers was investigated using a technique based on the coupling of in situ electrochemical measurements and optical observation. Results showed that the mean time to failure first increased and then decreased as thickness of the electrolyte layer increased, the maximum value was present at 200[Formula: see text][Formula: see text]m. The higher the bias voltage applied, the faster was the rate of dendrite growth. And, Sn leaded the ECM of SAC305 solder alloy. Mechanisms relevant have been proposed to explain the ECM behavior of Sn-3.0Ag-0.5Cu solder alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call