Abstract

An electrochemical method for producing a composite graphite powder by depositing nickel, copper and Cu—Ni coatings on graphite powder grade GL-1 is proposed, which ensures the production of a clad powder material. An installation, a technological scheme was developed, and a cyclic method of electrochemical metallization of graphite was proposed, which makes it possible to obtain a composite graphite powder of a given chemical composition. An electrochemical method for producing a composite graphite powder by depositing nickel, copper and Cu-Ni coatings on graphite powder grade GL-1 is proposed, which ensures the production of a clad powder material. An installation, a technological scheme was developed, and a cyclic method of electrochemical metallization of graphite was proposed, which makes it possible to obtain a composite graphite powder of a given chemical composition. The graphite powder nickel plating process was optimized, a regression equation was obtained, and the results of the dispersion analysis of regression coefficients were presented, indicating the adequacy and statistical significance of the obtained regression model. The thickness of nickel, copper and combined Cu-Ni coatings was determined by optical microscopy. It is shown that the electrolytic method of graphite powder metallization makes it possible to deposit continuous coatings with the formation of a shell (capsule) for each graphite particle. Presents the results of a study of the physicochemical properties of nickel-plated graphite powder (bulk density, fluidity, granulometric and chemical composition).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.