Abstract

The compatibility of glutaronitrile (GLN) and its mixtures with dimethyl carbonate (DMC) containing lithium bis-(trifluoromethane sulfonyl) imide (LiTFSI) with graphite negative electrode was investigated. GLN/DMC/LiTFSI electrolytes’ mixtures were characterized in terms of their ionic conductivities and viscosities. Cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy were performed in order to study the performances of the graphite anode in the GLN-based electrolytes. Results clearly indicate that no significant Li intercalation occurs in graphite in pure GLN, but when GLN/DMC (1:1 and 1:3 w/w) mixtures were used, the cycling ability of the electrode was improved as the coulombic efficiency reaches 98 and 99 %, respectively. Moreover, SEM images of the graphite anode indicate that after being cycled in GLN-based electrolytes, the electrode surface was homogenously covered by a Solid Layer Interface which insures a reversible lithiation of graphite anode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call