Abstract

Electrochemical inactivation of cyanobacteria using boron-doped diamond (BDD) electrode were comprehensively investigated in this study. The pulse amplitude modulated (PAM) fluorometry, flow cytometry, and confocal laser scanning microscopy (CLSM) were used to characterize the photosynthetic capacity and cell integrity of Microcystis aeruginosa. Persulfate is in-situ generated and activated during the process and responsible for the inactivation of M. aeruginosa. The inactivation efficiency increases along with the increase of applied currents. Additionally, a kinetic model based on a sequence of two consecutive irreversible first-order processes was developed to simulate the release and degradation of microcystins (MCLR). The model was able to successfully predict the concentration of extracellular, intracellular and total MCLR under different applied currents and extended exposure time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call