Abstract

A label-free electrochemical DNA sensor based on pyrrolidinyl peptide nucleic acid (acpcPNA)-immobilized on a paper-based analytical device (PAD) was developed. Unlike previous PNA-based electrochemical PAD (ePAD) sensors where the capture element was placed directly on the electrode, acpcPNA was covalently immobilized onto partially oxidized cellulose paper allowing regeneration by simple PAD replacement. As an example application, a sensor probe was designed for Mycobacterium tuberculosis (MTB) detection. The ePAD DNA sensor was used to determine a synthetic 15-base oligonucleotide of MTB by measuring the fractional change in the charge transfer resistance (Rct) obtained from electrochemical impedance spectroscopy (EIS). The Rct of [Fe(CN)6]3-/4- before and after hybridization with the target DNA could be clearly distinguished. Cyclic voltammetry (CV) was used to verify the EIS results, and showed an increase in peak potential splitting in a similar stepwise manner for each immobilization step. Under optimal conditions, a linear calibration curve in the range of 2–200 nM and the limit of detection 1.24 nM were measured. The acpcPNA probe exhibited very high selectivity for complementary oligonucleotides over single-base-mismatch, two-base-mismatch and non-complementary DNA targets due to the conformationally constrained structure of the acpcPNA. Moreover, the ePAD DNA sensor platform was successfully applied to detect PCR-amplified MTB DNA extracted from clinical samples. The proposed paper-based electrochemical DNA sensor has potential to be an alternative device for low-cost, simple, label-free, sensitive and selective DNA sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call