Abstract

To oxidize trace concentrations of organic contaminants under conditions relevant to surface- and groundwater, air-diffusion cathodes were coupled to stainless-steel cathodes that convert atmospheric O2 into hydrogen peroxide (H2O2), which then was activated to produce hydroxyl radicals (·OH). By separating H2O2 generation from its activation and employing a flow-through electrode consisting of stainless-steel fibers, the two processes could be operated efficiently in a manner that overcame mass-transfer limitations for O2, H2O2, and trace organic contaminants. The flexibility resulting from separate control of the two processes made it possible to avoid both the accumulation of excess H2O2 and the energy losses that take place after H2O2 has been depleted. The decrease in treatment efficacy occurring in the presence of natural organic matter was substantially lower than that typically observed in homogeneous advanced oxidation processes. Experiments conducted with ionized and neutral compounds indicated that electrostatic repulsion prevented negatively charged ·OH scavengers from interfering with the oxidation of neutral contaminants. Energy consumption by the dual-cathode system was lower than values reported for other technologies intended for small-scale drinking water treatment systems. The coordinated operation of these two cathodes has the potential to provide a practical, inexpensive way for point-of-use drinking water treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.