Abstract
AbstractChirality exists everywhere in nature, so chiral recognition is also an extremely important field. This paper explores the recognition of amino acid configuration by an electrochemical chiral sensing platform constructed with carbon nanomaterials (carbon quantum dots (CQDs) as the substrate material) combined with chiral selectors (chitosan (CS)). CQDs/CS, which is bonded by intermolecular force, and CQDs‐CS, which is formed by covalent grafting through amidation, are selected as electrochemical chiral recognition materials, and a series of characterization methods are carried out to indicate the successful preparation of the materials, and then attached to the glass carbon electrode (GCE), forming a chiral sensing platform for amino acid enantiomers. The differential voltammetry (DPV) method was used to convert the chemical signal into electrical signal. The results showed that compared with CQDs/CS, CQDs‐CS had better enantiomer resolution to tryptophan (Trp), and the peak current ratio (IL/ID) was 2.28.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have