Abstract

A simple procedure is introduced to use periodic Density Functional Theory calculations to estimate trends in the thermodynamics of surface alloy dissolution in acidic media. With this approach, the dissolution potentials for solute metal atoms embedded in the surface layer of various host metals (referenced to the dissolution potential of the solute in its pure, metallic form) are calculated. Periodic trends in the calculated potentials are found to be related to trends in surface segregation energies of the various solute/host pairs. The effects of water splitting and concomitant hydroxyl adsorption on the dissolution potentials are also considered; these effects do not change the potentials for highly oxophilic solutes embedded in less active hosts, but they do decrease the dissolution potential for more inert solutes on oxophilic hosts. Finally, the dissolution of Pt “skin” layers from Pt 3X (X = Fe, Co, and Ni) bulk alloys is analyzed; the Pt skins are found to be stabilized compared to pure Pt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.