Abstract

In this work, the electrochemical disinfection with conductive diamond electrodes was studied to treat simulated ballast water. Artemia salina was used as indicator organism and Escherichia coli as indicator bacterium. The influence of salinity (3 and 30g/L NaCl simulating brackish and ballast water, respectively), current density (up to 1273A/m2) and operation mode (batch and single-pass) on inactivation and total residual chlorine production rates was investigated. An increase in salinity and current density generally had a beneficial effect on both rates. A. salina in ballast water was completely inactivated after 45min of batch treatment at 255A/m2 (corresponding to about 200mg/L of produced chlorine) and this increased to 60min in brackish water. A. salina, whose inactivation follows first order kinetics, was found to be more resistant to electrochemical disinfection than E. coli. The complete inactivation of E. coli was achieved in less than 5min of batch operation at 127A/m2, whereas the concentration of produced chlorine was less than 20mg/L. Operation in single-pass mode was less effective for A. salina because it did not suffer mechanical stress, whereas E. coli inactivation occurred at low current densities and irrespective of the salinity due to both direct oxidation on the surface of conductive diamond anode and chemical reactions with chlorine species and/or reactive oxygen species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.