Abstract

Herein, a new electrochemical method was described for the determination of atropine based on the enhancement effect of an anionic surfactant: sodium dodecyl benzene sulfonate (SDBS). In pH 10.5 tetramethyl ammonium hydroxide as supporting electrolyte and in the presence of 0.4 × 10 −4 M SDBS, atropine yields a well-defined and sensitive oxidation peak at the multi-wall carbon nanotube electrode (MWCNTE). Compared with that in the absence of SDBS, the oxidation peak current of atropine remarkably increases in the presence of SDBS. The experimental parameters, such as supporting electrolyte, concentration of SDBS, and accumulation time, were optimized for atropine determination. The oxidation peak current is proportional to the concentration of atropine over the range from 3.98 ng/ml to 27.23 ng/ml. The detection limit is 0.449 ng/ml after 2 min of accumulation. This new voltammetric method was successfully used to determine atropine in Indian traditional medicine (seeds and leaves of Datura stramonium) with satisfactory recoveries. The developed method was also used for the analysis of atropine in pharmaceutical formulation of ophthalmic solution (eye drop). The relative standard deviations of intraday and interday analyses for atropine were 0.67% and 0.86% respectively ( n = 3) for the accumulation time of 120 s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.