Abstract

Magnetic particles (MP) and carbon nanotubes (CNT) have been extensively exploited in biosensor development. It has been recently suggested that combining MP binding of electroactive molecules with CNT wiring of the MP surface could provide novel sensing formats. Here, we demonstrate the validity of this approach using as a model dopamine (DA).As we show, DA can be electrostatically bound and concentrated using commercially available streptavidin-coated MP. Electrochemical detection of MP-bound DA is then accomplished by CNT wiring using cheap and disposable screen printed electrodes of different sizes and materials. The parameters potentially affecting DA binding, CNT wiring and electrochemical detection have been studied and optimized. The resulting assay takes 45min, displays LOD of 2nM DA in saline solution, is unaffected by ascorbic acid and uric acid, and can be operated in diluted urine human samples.Our results confirm that CNT wiring allows efficient detection of electroactive species after MP binding and is compatible with the study of complex real samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.