Abstract

The detection of protonated dopamine by differential pulse voltammetry (DPV) and square wave voltammetry (SWV) at arrays of micro-interfaces between two immiscible electrolyte solutions (μITIES) is presented. Microfabricated porous silicon membranes (consisting of eight pores, 26.6 μm in radius and 500 μm pore–pore separation, in a hexagonal layout) were prepared by photolithographic and etching procedures. The membrane pores were fabricated with hydrophobic internal walls so that the organic phase filled the pores and created the liquid interface at the aqueous side of the membrane. These were used for harnessing the benefits of three-dimensional diffusion to the interface and for interface stabilisation. The liquid–liquid interface provides a simple method to overcome the major problem in the voltammetric detection of dopamine at solid electrodes due to the co-existence of ascorbate at higher concentrations. Selectivity for dopamine over ascorbate was achieved by the use of dibenzo-18-crown-6 (DB18C6) for the facilitated ion transfer of dopamine across the μITIES array. Under these conditions, the presence of ascorbate in excess did not interfere in the detection of dopamine and the lowest concentration detectable was ca. 0.5 μM. In addition, the drawback of current signal saturation (non-linear increase of the peak current with the concentration of dopamine) observed at conventional (millimetre-sized) liquid–liquid interfaces was overcome using the microfabricated porous membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call