Abstract

A sensitive and rapid electrochemical microchip fabricated by assembling a surface-functionalized poly(dimethylsiloxane) (PDMS) microchannel with an interdigitated array (IDA) gold electrode was developed for the detection of human cardiac troponin I (cTnI) in the early diagnosis of acute myocardial infarction. Anti-cTnI was immobilized onto the internal surface of the PDMS channel on which protein G layer had been generated by silanization. To reduce electrode fouling, a PDMS channel was assembled with an IDA chip after surface treatment. The detection experiments were performed with successive injection of cTnI, alkaline phosphatase (AP)-labeled anti-cTnI, and p-aminophenylphosphate. Then, cyclic voltammograms were obtained by the oxidation peak current proportionally to the concentration of enzymatic product, p-aminophenol. The optimal packing density of anti-cTnI on the surface of the PDMS channel was determined at the anti-cTnI concentration of 30 μg/ml for the highest electrochemical signal. These demonstrate that the proper orientation and best packing density of antibody as well as no electrode fouling contributed to the low detection limit (148 pg/ml) of cTnI within 8 min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.