Abstract

A series of micelle-templated mesoporous nickel hydroxide films were prepared by electrochemical deposition from dilute surfactant solutions by using different types of template and by varying plating solvent composition. Lamellar mesostructured Ni(OH)2 films are obtained with only anionic surfactant sodium dodecyl sulfate (SDS) as the template. In particular, a unique cooperative assembly fashion, that is, the combination between Ni2+ and a complex composed of the primary template SDS and a cosurfactant, such as triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) copolymers and poly(ethylene glycol), was explored, by which two-dimensional hexagonal mesoporous Ni(OH)2 films were electrodeposited. Meanwhile, the deposition medium also plays a crucial role in determining the mesostructure of Ni(OH)2 films. For the composite nickel hydroxide films deposited from aqueous solution or dilute aqueous solution of ethylene glycol (<20 wt %) in the presence of SDS or the SDS-poly(alkylene oxide) polymer complexes, a mixed lamellar phase with d(001) = 37.4 A and d(001) = 28.5 A was obtained. However, single lamellar phase with d(001) = 37.4 A was electrodeposited from concentrated aqueous solutions of ethylene glycol (> or = 20 wt %). Furthermore, such deposition baths have access to hexagonal mesoporous nickel hydroxide films with d(100) = 37.4 A at 70 degrees C with the SDS-poly(alkylene oxide) polymer complexes as the templates. Within the potential window for Ni(OH)2, the morphology and quality of mesostructured films are significantly dependent on the deposition potential, while the mesostructures of the composite films always remain unchanged.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.