Abstract

An electrochemical sensor for simultaneous determination of dopamine (DA), uric acid (UA), guanine (G), and adenine (A) has been constructed by copolymerizing melamine monomer and Ag ions on a glassy carbon electrode (GCE) with cyclic voltammetry. The poly-melamine and nano Ag formed a hybridized film on the surface of the GCE. The morphology of the film was characterized by scanning electron microscope. The electrochemical and electrocatalytic properties of this film were characterized by cyclic voltammetry, linear sweep voltammetry, and square wave voltammetry (SWV). In 0.1 M phosphate buffer solution (pH 4.5), the modified electrode resolved the electrochemical response of DA, UA, G, and A into four well-defined voltammetric oxidation peaks by SWV; the oxidation peak current of DA, UA, G, and A increased 13-, 6-, 7-, and 9-fold, respectively, compared with those at the bare GCE and the SWV peak currents of DA, UA, G, and A with linear concentrations in the ranges of 0.1–50, 0.1–50, 0.1–50, and 0.1–60 μM, respectively. Based on this, a method for simultaneous determination of these species in mixture was setup. The detection limits were 10 nM for DA, 100 nM for UA, 8 nM for G, and 8 nM for A.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.