Abstract

A high-sensitivity, low-cost, self-powered biomass electrochemical biosensor based on the "evaporating potential" theory is developed for protein detection. The feasibility of experimental evaluation methods was verified with a probe protein of bovine serum albumin. The sensor was then used to detect lung cancer marker CYFRA21-1, and the potential of our sensor for clinical diagnosis was demonstrated by serum analysis. This work innovatively exploits the osmotic power generation capability of natural wood to construct a promising electrochemical biosensor that was driven by kinetics during testing. The detection methods used for this sensor, chronoamperometry and AC impedance, showed potential for quantitative analysis and specific detection, respectively. Furthermore, the sensor could facilitate new insights into the development of high-sensitivity, low-cost, and easy-to-use electrochemical biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.