Abstract
The development of sensors that mimic the natural smell sensing mechanism and selectively recognizes the odorants remains highly challenging. Electrochemical based sensing approaches aiming at monitoring molecular recognition events between surface receptors and analytes in solution or in the gas phase, are one possible transduction platforms among others for the construction of an artificial nose. The principle of electrochemical detection lies on the shift of the potential/current during the recognition event, which is proportional to the concentration of the analyte, in our case the odorant. A tremendous amount of efforts has been put into making electrochemical sensors sensitive and selective to the analyte of interest through the use of nanomaterials, development of different detection schemes and application of innovative receptor ligands for selective detection of the analyte. There have been significant advances in electrochemical based odorant sensing by using odorant binding proteins (OBP) as surface receptors, small soluble proteins present in nasal mucus at millimolar concentrations where the hydrophobic binding pocket gives the ability to reversibly bind odorant molecules. As OBPs are robust and easy to produce receptors, they are good candidates for the design of biosensors. In this chapter, we focus on the progress made on the detection of odorant molecules using OBPs as a bioreceptor and electrochemistry as a transduction method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.