Abstract

Odorant binding proteins (OBP) are soluble lipocalins produced in large amounts in the nasal mucosa of several mammalian species. Although OBPs can bind a large variety of odorous compounds, direct and exclusive involvement of these proteins in olfactory perception has not been clearly demonstrated. This study investigated the binding properties and chemical resistance of OBP to the chemically reactive lipid peroxidation end-product 4-hydroxy-2-nonenal (HNE), in an attempt to establish a functional relationship between this protein and the molecular mechanisms combating free radical cellular damage. Experiments were carried out on recombinant porcine and bovine OBPs and results showed that both forms were able to bind HNE with affinities comparable with those of typical OBP ligands (K(d) = 4.9 and 9.0 microm for porcine and bovine OBP, respectively). Furthermore, OBP functionality, as determined by measuring the binding of the fluorescent ligand 1-aminoanthracene, was partially lost only when incubating HNE levels and exposure time to HNE exceeded physiological values in nasal mucosa. Finally, preliminary experiments in a simplified model resembling nasal epithelium showed that extracellular OBP can preserve the viability of an epithelial cell line derived from bovine turbinates exposed to toxic amounts of the aldehyde. These results suggest that OBP, which is expressed at millimolar levels, might reduce HNE toxicity by removing from the nasal mucus a significant fraction of the aldehyde that is produced as a consequence of direct exposure to the oxygen present in inhaled air.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call