Abstract

Electrochemical experiments with a chalcopyrite rotating disk electrode were carried out in alkaline glycine solutions. This showed no apparent passivation behaviour during anodic dissolution that is observed in acid solutions. The current increased with applied potential from the open circuit potential with no resemblance to the passivation region seen in acid solutions. A loosely held porous layer developed on the surface consisting largely of iron oxyhydroxides that had a limited effect on the anodic current. Elemental sulfur and a disulfide species were detected using XPS and Raman spectroscopy but did not passivate the surface as has been proposed for acid solutions. The disulfide species is sometimes used to infer a metal deficient sulfide or polysulfide that is responsible for passivation but in this study it had no passivating influence. Current-potential curves showed features of a non-ideal semiconductor that were explained by charge transfer via surface states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.