Abstract

Oxide-hydrates of molybdenum (OHM) are investigated as 3-volt cathode materials for rechargeable lithium batteries. These materials with different water content showed a much better performance than that of MoO3 as cathode of the rechargeable lithium battery. We report the electrochemical characteristics of Li//OHM batteries using the oxides and oxide-hydrates of molybdenum which were synthesized from molybdic acid. The oxide has a corrugated layered structure consisting of corner-shared MoO6 octahedra. This structure provides electronic conductivity within basal layer and high lithium ion mobility between layers. The mechanism of dehydration and structural rearrangement of molybdic acid during heat treatment were studied by thermal analysis, x-ray diffraction, and Raman spectroscopy. Thermal analysis indicates a two-step dehydration and formation of orthorhombic α-MoO3 and monoclinic s-MoO3. Discharge profiles and kinetics are dependent on the amount of “structural water” into the host lattice. The electroinsertion of Li ions occurs mainly in two steps in the potential range between 3.0 and 1.5 V (compositional range 0.0≤x(Li)≤1.5).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.