Abstract
ABSTRACTIn this study, we sprayed a graphene oxide–multiwalled carbon nanotube (GM) suspension in isopropyl alcohol–water onto a Nafion membrane. The electrodeposition of polypyrrole (PPy) was carried out on Nafion to complete the fabrication of a solid‐state symmetric supercapacitor. Nafion 117 membranes are used as electrolyte separators in the preparation of supercapacitors. The characterization of the symmetric supercapacitor was done by X‐ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. The electrochemical properties of the symmetric solid‐state supercapacitor were investigated by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy techniques in 1M lithium chloride. A specific capacitance of 90.4 mF/cm2 (258.3 F/g1) was obtained for the supercapacitor at a scan rate of 10 mV s−1. Maximum energy and power densities of 10 W h/kg and 6031 W/kg were obtained for the fabricated supercapacitor. In such a symmetric configuration, the highly interconnection networks of GM–PPy provided good structure for the supercapacitor electrode, and the good interaction between PPy and GM provided fast electron‐ and charge‐transportation paths so that a high capacitance was achieved. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44926.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.